Development of an air-stable, high energy density printed silver oxide battery for printed electronics

نویسندگان

  • Kyle Braam
  • Kyle Theunis Braam
  • Ana Claudia Arias
چکیده

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. Development of an air-stable, high energy density printed silver oxide battery for printed electronics Abstract Development of an air-stable, high energy density printed silver oxide battery for printed electronics Printed batteries are emerging battery technology that has the potential to enable the production of cheap, small form factor, flexible batteries capable of powering a diverse set of existing and emerging applications such as RFID tags, flexible displays, and distributed sensors. Partially printed battery systems have been demonstrated with various chemistries, but what is needed is a low cost, air stable method of fully printing a high energy density batteries. The silver oxide chemistry is attractive for developing a printed battery as this chemistry has demonstrated high energy densities and is capable of air stable fabrication processes due to its aqueous based chemistry. To facilitate the advancement of this technology, material components and printing techniques need to be developed to demonstrate a printed silver oxide battery. In this thesis, I will present a printed, high energy density silver oxide battery using stencil printing. A key development of this work is the demonstration of a novel photopolymerized polyacrylic acid separator layer. The mechanical and conductivity properties of this layer are characterized and optimized for an alkaline silver oxide battery. The incorporation of this layer has enabled a printed battery capable of high rates of discharge. The batteries show no difference in discharge upon flexing at a bend radius of 1.0 cm, indicating their potential in flexible applications. The fabricated batteries have demonstrated high energy densities of 10 mWhr cm-3 and areal capacities of 5.4 mAhr cm-2 , which satisfies the power and capacity requirements for most of the proposed applications. In addition, we have examined several printed encapsulation schemes (epoxy and silicone caulk) for encapsulating an alkaline battery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A stencil printed, high energy density silver oxide battery using a novel photopolymerizable poly(acrylic acid) separator.

A novel photopolymerized poly(acrylic acid) separator is demonstrated in a printed, high-energy-density silver oxide battery. The printed battery demonstrates a high capacity of 5.4 mA h cm(-2) at a discharge current density of 2.75 mA cm(-2) (C/2 rate) while delivering good mechanical flexibility and robustness.

متن کامل

All-Printed, Stretchable Zn-Ag2O Rechargeable Battery via, Hyperelastic Binder for Self-Powering Wearable Electronics

DOI: 10.1002/aenm.201602096 of highly conductive fillers (>107 S m−1, silver nanowires and carbon nanomaterials) into an elastomeric matrix.[23] Unlike deterministic composite, these devices are intrinsically stretchable as fillers maintain electrical contact by sliding along each other during stretching.[22] Intrinsically stretchable batteries have been reported, but none are completely elasti...

متن کامل

Amorphous InGaZnO Thin Film Transistor Fabricated with Printed Silver Salt Ink Source/Drain Electrodes

Recently, amorphous indium-gallium-zinc-oxide thin film transistors (a-IGZO TFTs) with inkjet printing silver source/drain electrodes have attracted great attention, especially for large area and flexible electronics applications. The silver ink could be divided into two types: one is based on silver nanoparticles, and the other is silver salt ink. Organic materials are essential in the formula...

متن کامل

A New Sensor Based on Graphite Screen Printed Electrode Modified With Cu-Nanocomplex for Determination of Paracetamol

Paracetamol is a non-steroidal anti-inflammatory drug used as an antipyretic agent for the alternative to aspirin. Conversely, the overdoses of paracetamol can cause hepatic toxicity and kidney damage. Hence, the determination of paracetamol receives much more attention in biological samples and also in pharmaceutical formulations. Here, we report a rapid<span id="transmark" style="display: non...

متن کامل

Development of Copper-Ferrite Spinel Coating on AISI 430 Steel Used as Solid Oxide Fuel Cell

The bare and pre-oxidized AISI 430 pieces were screen printed by copper ferrite spinel coatings. Good bonding between the coating and the substrate was achieved by the reactive sintering process of the reduced coating. The energy dispersive X-ray spectroscopy (EDS) analysis revealed that the scale is a double layer consisting of a chromia-rich subscale and an outer Cu/Fe-rich spinel. The result...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015